Ultrafast changes in the far-infrared conductivity of carbon nanotubes

2008 
The ultrafast charge-carrier dynamics in single-wall carbon nanotubes (NTs) have been investigated by time-resolved THz spectroscopy. Both the equilibrium and non-equilibrium conductivity data of the NTs in the far-infrared (FIR) spectral range from 1 to 40 THz are dominated by optical transitions across the band gap of tubes with gap energies of ~ 10 meV. A simple model based on an ensemble of two-level systems excellently explains all experimental findings. In particular, the surprisingly weak temperature dependence of the FIR conductivity has been shown to arise from tube-to-tube variation of the chemical potential which is ~ 100 meV in our sample. The results strongly suggest to use the temperature dependence of the FIR conductivity as a very sensitive and contact-free probe of the NT sample purity. Finally, the relaxation of the photo-excited NT sheet on a picosecond time scale mainly reflects the cooling of hot phonons which is about five times faster than in graphite. This points to much stronger lattice anharmonicities in NTs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    1
    Citations
    NaN
    KQI
    []