Antibodies against Tumor Cell Glycolipids and Proteins, but Not Mucins, Mediate Complement-Dependent Cytotoxicity
2005
One of several effector mechanisms thought to contribute to Ab efficacy against cancer is complement-dependent cytotoxicity (CDC). Serological analysis of a series of clinical trials conducted over a 10-year period suggested that six vaccines containing different glycolipids induced Abs mediating CDC whereas four vaccines containing carbohydrate or peptide epitopes carried almost exclusively by mucin molecules induced Abs that did not mediate CDC. To explore this further, we have now compared cell surface reactivity using flow cytometry assays (FACS), complement-fixing ability, and CDC activity of a panel of mAbs and immune sera from these trials on the same two tumor cell lines. Abs against glycolipids GM2, globo H and Lewis Y, protein KSA (epithelial cell adhesion molecule, also known as EpCAM) and mucin Ags Tn, sialylated Tn, Thomsen Friedenreich (TF), and MUC1 all reacted comparably by FACS with tumor cells expressing these Ags. Compared with the strong complement binding and CDC with Abs against glycolipids and KSA, complement binding was diminished with Abs against mucin Ags and no CDC was detected. A major difference between these two groups of Ags is proximity to the cell membrane. Glycolipids and globular glycoproteins extend less than 100 A from the cell membrane while mucins extend up to 5000 A. Although complement activation at sites remote from the cell membrane has long been known as a mechanism for resistance from complement lysis in bacteria, it is identified here for the first time as a factor which may contribute to resistance from CDC against cancer cells.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
60
References
67
Citations
NaN
KQI