Blind image quality assessment for noise

2014 
Image denoising has been fanatically researched for a very long time in that it is a commonplace yet important subject. The task to testify the performance of different image de-noising methods always resorts to PSNR in the past, until the emergence of SSIM, a landmark image quality assessment (IQA) metric. Since then, a vast majority of IQA methods were introduced in terms of various kinds of models. But unfortunately, those IQA metrics are along with more or less deficiencies such as the requirement of original images, making them far less than the ideal approaches. To address this problem, in this paper we propose an effective and blind image quality assessment for noise (dubbed BIQAN) to approximate the human visual perception to noise. The BIQAN is realized with three important portions, namely the free energy based brain principle, image gradient extraction, and texture masking. We conduct and compare the proposed BIQAN and a large amount of existing IQA metrics on three largest and most popular image quality databases (LIVE, TID2013, CSIQ). Results of experiments prove that the BIQAN has acquired very encouraging performance, outperforming those competitors stated above.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    7
    Citations
    NaN
    KQI
    []