Molecular Engineering of Aluminum–Copper Interfaces for Joining by Plastic Deformation†

2016 
Interface modification based on ultra-thin mercapto-propyl(trimethoxy)silane (MPTMS) films is shown to promote joining of copper and aluminum by plastic deformation followed by a heat treatment. The surface morphology and the surface chemistry of the metal substrates were analyzed by means of FE-SEM, XPS, and FT-IRRAS. The spectroscopic data show that the MPTMS film is crosslinked via Si–O–Si bonds and that stable Cu–S and Si–O–Al interfacial bonds are formed. The shear-force tests of the joints led to force displacement curves that are characteristic for a covalently bonded interface. Complementary cross sectional SEM and EDS analysis of the joint proved that a defect-free interface was formed without any measureable interdiffusion of metals across the interface or cracking of an oxide films.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    6
    Citations
    NaN
    KQI
    []