Two-level QSAR network (2L-QSAR) for peptide inhibitor design based on amino acid properties and sequence positions

2014 
In the design of peptide inhibitors the huge possible variety of the peptide sequences is of high concern. In collaboration with the fast accumulation of the peptide experimental data and database, a statistical method is suggested for peptide inhibitor design. In the two-level peptide prediction network (2L-QSAR) one level is the physicochemical properties of amino acids and the other level is the peptide sequence position. The activity contributions of amino acids are the functions of physicochemical properties and the sequence positions. In the prediction equation two weight coefficient sets {ak} and {bl} are assigned to the physicochemical properties and to the sequence positions, respectively. After the two coefficient sets are optimized based on the experimental data of known peptide inhibitors using the iterative double least square (IDLS) procedure, the coefficients are used to evaluate the bioactivities of new designed peptide inhibitors. The two-level prediction network can be applied to the pep...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    3
    Citations
    NaN
    KQI
    []