Overview of 1.2kV – 2.2kV SiC MOSFETs targeted for industrial power conversion applications

2015 
This paper presents the latest 1.2kV–2.2kV SiC MOSFETs designed to maximize SiC device benefits for high-power, medium voltage power conversion applications. 1.2kV, 1.7kV and 2.2kV devices with die size of 4.5mm × 4.5mm were fabricated, exhibiting room temperature on-resistances of 34mOhm, 39mOhm and 41mOhm, respectively. The ability to safely withstand single-pulse avalanche energies of over 17J/cm 2 is demonstrated. Next, the 1.7kV SiC MOSFETs were used to fabricate half-bridge power modules. The module typical onresistance was 7mOhm at Tj=25°C and 11mOhm at 150°C. The module exhibits 9mJ turn-on and 14mJ turn-off losses at Vds=900V, Id=400A. Validation of GE's SiC MOSFET performance advantages was done through continuous buck-boost operation with three 1.7kV modules per phase leg exhibiting 99.4% efficiency. Device ruggedness and tolerance to terrestrial cosmic radiation was evaluated. Experimental results show that higher voltage devices (2.2kV and 3.3kV) are more susceptible to cosmic radiation, requiring up to 45% derating in order to achieve module failure rate of 100 FIT, while 1.2kV MOSFETs require only 25% derating to deliver similar FIT rate. Finally, the feasibility of medium voltage power conversion based on series connected 1.2kV SiC MOSFETs with body diode is demonstrated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    41
    Citations
    NaN
    KQI
    []