Ectopic noradrenergic hyperinnervation does not functionally compensate for neonatal forebrain acetylcholine lesion

2000 
Abstract Adult rats who have undergone neonatal 192 IgG-saporin induced lesions of forebrain acetylcholine (ACH) neurons are normal on many behavioral tasks. In this study we determined whether ectopic hippocampal ingrowths, a documented consequence of these neonatal cholinergic lesions, functionally compensate for ACH denervation in these rats. Neonatal rats underwent systemic 6-hydroxydopamine (6-OHDA) injections on postnatal days (PND) 1–3 to prevent the ingrowths, and/or intraventricular 192 IgG-saporin injections on PND 7. The 192 IgG-saporin profoundly reduced basal forebrain p75 neurotrophin receptor (p75 NTR ) immunoreactive (IR) neurons. The 6-OHDA treatment abolished hippocampal and cortical dopamine-beta-hydroxylase (DBH) IR terminals, indicating the absence of normal norepinephrine (NE) innervation. Ectopic DBH IR and p75 NTR IR varicosities which occurred in the hippocampus of 192 IgG-saporin treated rats were also eliminated by 6-OHDA treatment. Behavioral testing in adulthood indicated no effect of the treatments on the Morris water maze. 192 IgG-saporin treatment caused perseveration during delayed spatial alternation (DSA) and increased working but not reference memory errors on the radial arm maze (RAM). The 6-OHDA plus 192 IgG-saporin treated rats did not differ from the 192 IgG-saporin only rats on any task. These results indicate that ectopic hippocampal NE ingrowths do not functionally compensate for neonatal ACH lesions. Neonatal forebrain ACH lesion impairs working memory on the RAM but the absence of an effect on DSA contraindicates a basic dysfunction of short term memory. Despite severe combined neonatal loss of forebrain ACH and NE innervation, behavior is remarkably intact.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    14
    Citations
    NaN
    KQI
    []