Multi‐Fluid Simulation of the Magnetic Field Evolution in Neutron Stars

2008 
Using a numerical simulation, we study the effects of ambipolar diffusion and ohmic diffusion on the magnetic field evolution in the interior of an isolated neutron star. We are interested in the behavior of the magnetic field on a long time scale, over which all Alfven and sound waves have been damped. We model the stellar interior as an electrically neutral plasma composed of neutrons, protons and electrons, which can interact with each other through collisions and electromagnetic forces. Weak interactions convert neutrons and charged particles into each other, erasing chemical imbalances. As a first step, we assume that the magnetic field points in one fixed Cartesian direction but can vary along an orthogonal direction. We start with a uniform‐density background threaded by a homogeneous magnetic field and study the evolution of a magnetic perturbation as well as the density fluctuations it induces in the particles. We show that the system evolves through different quasi‐equilibrium states and estimat...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []