Synthesis of Ni(OH) 2 , Suitable for Supercapacitor Application, by the Cold Template Homogeneous Precipitation Method

2021 
α-Ni(OH)2 obtained by template homogeneous precipitation exhibits high electrochemical activity in supercapacitors. The main disadvantage is the high energy consumption for maintaining a high temperature during synthesis. To reduce energy consumption, it is proposed to lower the synthesis temperature. In the study, α-Ni(OH)2 was obtained by the method of cold template homogeneous precipitation using Culminal C8465 (0.5 %) as a template for 6 months at t=20–35 °С. The electrochemical characteristics of the sample were studied by cyclic voltammetry and galvanostatic charge-discharge cycling of a pasted binder-free electrode made without introducing an external binder in the supercapacitor mode. It was determined that low-crystalline α-Ni(OH)2 was formed, consisting of agglomerates of spherical particles. Low specific characteristics of nickel hydroxide were revealed at the beginning of cycling due to blocking of the active surface. It was shown that the specific capacity of the sample increased with further cycling due to the breakdown of aggregates into smaller particles; specific capacities of 80 F/g and 38 mA⋅h/g were obtained. However, the lack of binding properties of the template residues was revealed, resulting in a decrease in specific characteristics. It was concluded that it was necessary to introduce an external binder. A previously undescribed effect of a significant increase in the specific capacity during drying of an alkali-impregnated electrode caused by the disintegration of particle agglomerates during alkali carbonization (the maximum capacity is 135 F/g and 69 mA⋅h/g) was revealed. It was concluded that using the revealed effect of any nickel hydroxide samples obtained by various methods of bulk template synthesis was promising.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []