Surface Composition and Catalytic Evolution of AuxPd1−x (x = 0.25, 0.50 and 0.75) Nanoparticles Under CO/O2 Reaction in Torr Pressure Regime and at 200 °C

2011 
AuxPd1-x (x = 0, 0.25, 0.5, 0.75, 1) nanopar- ticle (NP) catalysts (8-11 nm) were synthesized by a one- pot reaction strategy using colloidal chemistry. XPS depth profiles with variable X-ray energies and scanning trans- mission electron microscopy (STEM) analyses show that the as-synthesized AuxPd1-x (x = 0.25 and 0.5) bimetallic NPs have gradient alloy structures with Au-rich cores and Pd-rich shells. The evolution of composition and structure in the surface region corresponding to a mean free path of 0.6-0.8 nm (i.e., 2-3 layers to the bulk from the particle surface) was studied with ambient pressure X-ray photo- electron spectroscopy (AP-XPS) under CO/O2 reaction in the Torr pressure regime. Under the reaction conditions of 80 mTorr CO and 200 mTorr O2 at 200 C, the surface region of Au0.75Pd0.25 NP is Au-rich (*70% by Au). All AuxPd1-x (x = 0.25, 0.5, 0.75) NP catalysts have higher turnover rates for the model CO/O2 reaction than pure Pd and pure Au NPs. The Pd-rich Au0.25Pd0.75 NPs show the highest turnover rates and the Pd-rich Au0.5Pd0.5 NPs the lowest turnover rates at 200 C. Interestingly, the Au-rich Au0.75Pd0.25 NPs exhibit steady-state turnover rates which are intermediate to those of the Pd-rich bimetallic nanoparticles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    58
    Citations
    NaN
    KQI
    []