Quantitative Structure Retention Relationship Models in an Analytical Quality by Design Framework: Simultaneously Accounting for Compound Properties, Mobile-Phase Conditions, and Stationary-Phase Properties

2013 
Quantitative structure retention relationships (QSRRs) can play an important role in enhancing the speed and quality of chromatographic method development. This paper presents a novel (compound-classification-based) QSRR modeling strategy that simultaneously accounts for the analyte properties, mobile-phase conditions, and stationary-phase properties. It involves the adoption of two models: (A) partial-least-squares discriminate analysis (PLS-DA) to classify compounds into subclasses having similar interactive relationships between the mobile-phase conditions and stationary phase; (B) L partial least squares (L-PLS) to predict the compound’s retention time based on the mobile-phase conditions, stationary phase, and compound properties. For the retention time of a compound to be modeled, the most favorable compound class is identified in an optimization framework that simultaneously minimizes both the compound misclassification rate (based on PLS-DA) and the retention time prediction error (based on L-PLS)...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    17
    Citations
    NaN
    KQI
    []