Water-Saving Potential of Subsurface Drip Irrigation For Winter Wheat

2019 
: Groundwater plays a major role in agro-hydrological processes in the North China Plain (NCP). The NCP is facing a water deficit, due to a rapid decline in the water table because of the double cropping system. A two crop (maize and wheat) rotation is required to balance the food supply and demand, which leads to an imbalance between evapotranspiration (ET) and precipitation. Thus, there has been a decline of about 1.35 m yr −1 of groundwater (Luancheng Agroecosystem Experimental Station (LAES), NCP) during the last 10 years. Lysimeter experiments were conducted under different irrigation treatments (flood, surface drip, and subsurface drip) to account for ET in the selection of a suitable irrigation method. Subsurface drip irrigation reduced ET by 26% compared to flood irrigation, and 15% compared to surface drip irrigation, with significant grain yield and biomass formation due to decreased evaporation losses. Grain yield, yield components, and above ground biomass were similar in subsurface drip and flood irrigation. However, these biomass parameters were lower with surface drip irrigation. Furthermore, subsurface drip irrigation increased the crop water productivity (24.95%) and irrigation water productivity (19.59%) compared to flood irrigation. The subsurface irrigated plants showed an increase in net photosynthesis (~10%), higher intrinsic water use efficiency (~36%), lower transpiration rate (~22%), and saved 80 mm of water compared to flood irrigation. Our findings indicate that subsurface drip irrigation can be adopted in the NCP to increase water use efficiency, optimize grain yield, and minimize water loss in order to address scarcity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    15
    Citations
    NaN
    KQI
    []