Impact of protein conformational diversity on AlphaFold predictions

2021 
After the outstanding breakthrough of AlphaFold in predicting protein 3D models, new questions appeared and remain unanswered. The ensemble nature of proteins, for example, challenges the structural prediction methods because the models should represent a set of conformers instead of single structures. The evolutionary and structural features captured by effective deep learning techniques may unveil the information to generate several diverse conformations from a single sequence. Here we address the performance of AlphaFold2 predictions under this ensemble paradigm. Using a curated collection of apo-holo conformations, we found that AlphaFold2 predicts the holo form of a protein in 70% of the cases, being unable to reproduce the observed conformational diversity with an equivalent error than in the estimation of a single conformation. More importantly, we found that AlphaFold29s performance worsens with the increasing conformational diversity of the studied protein. This impairment is related to the heterogeneity in the degree of conformational diversity found between different members of the homologous family of the protein under study. Finally, we found that main-chain flexibility associated with apo-holo pairs of conformers negatively correlates with the predicted local model quality score plDDT, indicating that plDDT values in a single 3D model could be used to infer local conformational changes linked to ligand binding transitions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    2
    Citations
    NaN
    KQI
    []