CSF-1–Dependent Red Pulp Macrophages Regulate CD4 T Cell Responses

2011 
The balance between immune activation and suppression must be regulated to maintain immune homeostasis. Tissue macrophages (MΦs) constitute the major cellular subsets of APCs within the body; however, how and what types of resident MΦs are involved in the regulation of immune homeostasis in the peripheral lymphoid tissues are poorly understood. Splenic red pulp MΦ (RPMs) remove self-Ags, such as blood-borne particulates and aged erythrocytes, from the blood. Although many scattered T cells exist in the red pulp of the spleen, little attention has been given to how RPMs prevent harmful T cell immune responses against self-Ags. In this study, we found that murine splenic F4/80hiMac-1low MΦs residing in the red pulp showed different expression patterns of surface markers compared with F4/80+Mac-1hi monocytes/MΦs. Studies with purified cell populations demonstrated that F4/80hiMac-1low MΦs regulated CD4+ T cell responses by producing soluble suppressive factors, including TGF-β and IL-10. Moreover, F4/80hiMac-1low MΦs induced the differentiation of naive CD4+ T cells into functional Foxp3+ regulatory T cells. Additionally, we found that the differentiation of F4/80hiMac-1low MΦs was critically regulated by CSF-1, and in vitro-generated bone marrow-derived MΦs induced by CSF-1 suppressed CD4+ T cell responses and induced the generation of Foxp3+ regulatory T cells in vivo. These results suggested that splenic CSF-1–dependent F4/80hiMac-1low MΦs are a subpopulation of RPMs and regulate peripheral immune homeostasis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    40
    Citations
    NaN
    KQI
    []