Influence of carbon on microstructure and mechanical properties of magnetron sputtered TaW coatings

2020 
Abstract (Ta,W) and (Ta,W):C films with ~5 at.% C were deposited by non-reactive magnetron sputtering. They crystallised in a bcc structure with a columnar microstructure. The solid solubility of C in (Ta,W) alloys is very small, which suggests that the (Ta,W):C films are supersaturated with respect to carbon. This was confirmed by diffraction and atom probe tomography (APT) showing that carbon is in the as-deposited (Ta,W):C films homogeneously distributed in the structure without carbide formation or carbon segregations. Annealing at 900 °C for 2 h showed no significant column coarsening but an increased defect density at the column boundaries in the (Ta,W):C films. The films were still supersaturated with respect to carbon but APT showed a partial segregation of carbon presumably to defect-rich column boundaries after annealing. The (Ta,W) films exhibited a hardness of ~12–13 GPa. Alloying with carbon increased the hardness to ~17 GPa. The hardness increased to ~19 GPa for the annealed (Ta,W):C films. This annealing-induced hardness increase was explained by C segregation to the more defect-rich column boundaries, which restricts dislocation movements. (Ta,W):C coatings may be a potential alternative to ceramic coatings, worth exploring further by small scale mechanical testing to investigate if these materials are ductile.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    5
    Citations
    NaN
    KQI
    []