β8 Integrin Binds Rho GDP Dissociation Inhibitor-1 and Activates Rac1 to Inhibit Mesangial Cell Myofibroblast Differentiation

2006 
Abstract αvβ8 integrin expression is restricted primarily to kidney, brain, and placenta. Targeted αvor β8 deletion is embryonic lethal due to defective placenta and brain angiogenesis, precluding investigation of kidney αvβ8 function. We find that kidney β8 is localized to glomerular mesangial cells, and expression is decreased in mouse models of glomerulosclerosis, suggesting that β8 regulates normal mesangial cell differentiation. To interrogate β8 signaling pathways, yeast two-hybrid and co-precipitation studies demonstrated β8 interaction with Rho guanine nucleotide dissociation inhibitor-1 (GDI). Selective β8 stimulation enhanced β8-GDI interaction as well as Rac1 (but not RhoA) activation and lamellipodia formation. Mesangial cells from itgb8-/- mice backcrossed to a genetic background that permitted survival, or gdi-/- mice, which develop glomerulosclerosis, demonstrated RhoA (but not Rac1) activity and α-smooth muscle actin assembly, which characterizes mesangial cell myofibroblast transformation in renal disease. To determine whether Rac1 directly modulates RhoA-associated myofibroblast differentiation, mesangial cells were transduced with inhibitory Rac peptide fused to human immunodeficiency virus-Tat, resulting in enhanced α-smooth muscle actin organization. We conclude that the β8 cytosolic tail in mesangial cells organizes a signaling complex that culminates in Rac1 activation to mediate wild-type differentiation, whereas decreased β8 activation shifts mesangial cells toward a RhoA-dependent myofibroblast phenotype.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    90
    References
    37
    Citations
    NaN
    KQI
    []