Exploring Hydrodynamic Instabilities along the Infalling High-velocity Cloud Complex A

2020 
Complex A is a high-velocity cloud that is traversing through the Galactic halo toward the Milky Way's disk. We combine both new and archival Green Bank Telescope observations to construct a spectroscopically resolved HI~21-cm map of this entire complex at a $17.1\lesssim\log{\left({N_{\rm HI},\,1\sigma}/{\rm cm}^{-2}\right)}\lesssim17.9$ sensitivity for a ${\rm FWHM}=20~{\rm km}\,{\rm s}^{-1}$ line and $\Delta\theta=9.1\,{\rm arcmins}$ or $17\lesssim\Delta d_{\theta}\lesssim30~\rm pc$ spatial resolution. We find that that Complex A is has a Galactic standard of rest frame velocity gradient of $\Delta\rm v_{GSR}/\Delta L=25~{\rm km}\,{\rm s}^{-1}/{\rm kpc}$ along its length, that it is decelerating at a rate of $\langle a\rangle_{\rm GSR}=55~{\rm km}/{\rm yr}^2$, and that it will reach the Galactic plane in $\Delta t\lesssim70~{\rm Myrs}$ if it can survive the journey. We have identify numerous signatures of gas disruption. The elongated and multi-core structure of Complex A indicates that either thermodynamic instabilities or shock-cascade processes have fragmented this stream. We find Rayleigh-Taylor fingers on the low-latitude edge of this HVC; many have been pushed backward by ram-pressure stripping. On the high-latitude side of the complex, Kelvin-Helmholtz instabilities have generated two large wings that extend tangentially off Complex A. The tips of these wings curve slightly forward in the direction of motion and have an elevated \hi\ column density, indicating that these wings are forming Rayleigh-Taylor globules at their tips and that this gas is becoming entangled with unseen vortices in the surrounding coronal gas. These observations provide new insights on the survivability of low-metallicity gas streams that are accreting onto $L_\star$ galaxies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    110
    References
    3
    Citations
    NaN
    KQI
    []