Molecular mechanisms of the EHF bioeffect

1994 
A generalizing theoretical analysis of models of mechanisms of interaction of biological macromolecules with EHF electromagnetic fields is performed. It is shown that nonthermal EHF radiation has a biological effect when the dipole-active oscillation Q of the primary receptors is greater than or equal to 103–104, which is of the same magnitude as the corresponding characteristic of individual peaks in the radiation spectrum. From the analysis of model equations of the kinetics of synthesis and dissociation of molecular associates, an explanation of the EHF bioeffect is proposed that is based on the phenomenon of high sensitivity to external actions of responses in which high-molecular-weight aggregates participate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    0
    Citations
    NaN
    KQI
    []