Neutralizing antibody to proNGF rescues erectile function by regulating the expression of neurotrophic and angiogenic factors in a mouse model of cavernous nerve injury.

2020 
BACKGROUND Radical prostatectomy induces some degree of cavernous nerve injury (CNI) and causes denervation-induced pathologic changes in cavernous vasculature, regardless of the advances in surgical techniques and robotic procedures. The precursor for nerve growth factor (proNGF) is known to be involved in neuronal cell apoptosis and microvascular dysfunction through its receptor p75NTR . OBJECTIVES To determine the expression of proNGF/p75NTR and the efficacy of proNGF neutralizing antibody (anti-proNGF-Ab) in a mouse model of ED induced by CNI. METHODS Age-matched 12-week-old C57BL/6 mice were distributed into three groups: sham group and bilateral CNI group treated with intracavernous injections of PBS (20 μL) or of anti-proNGF-Ab (20 µg in 20 μL of PBS) on days -3 and 0. Two weeks after treatment, erectile function was measured by electrical stimulation of cavernous nerve. Penis tissues from a separate group of animals were harvested for further analysis. We also determined the efficacy of anti-proNGF-Ab on neural preservation in major pelvic ganglion (MPG) ex vivo. RESULTS We observed increased penile expression of proNGF and p75NTR after CNI. Intracavernous administration of anti-proNGF-Ab increased nNOS and neurofilament expression probably by enhancing the production of neurotrophic factors, such as neurotrophin-3, NGF, and brain-derived neurotrophic factor. Anti-proNGF-Ab preserved the integrity of cavernous sinusoids, such as pericytes, endothelial cells, and endothelial cell to cell junctions, possibly by controlling angiogenic factors (angiopoietin-1, angiopoietin-2, and vascular endothelial growth factor); and induced endogenous eNOS phosphorylation in CNI mice. And finally, treatment with anti-proNGF-Ab rescued erectile function in CNI mice. Anti-proNGF-Ab also enhanced neurite sprouting from MPG exposed to lipopolysaccharide. CONCLUSION The preservation of damaged cavernous neurovasculature through inhibition of the proNGF/p75NTR pathway may be a novel strategy to treat radical prostatectomy-induced erectile dysfunction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []