A novel iron (II) polyphthalocyanine catalyst assembled on graphene with significantly enhanced performance for oxygen reduction reaction in alkaline medium

2014 
Abstract To realize the large-scale commercial application of direct methanol fuel cells (DMFCs), the catalysts for oxygen reduction reaction (ORR) are the crucial obstacle. Here, an efficient non-noble-metal catalyst for ORR, denoted FePPc/PSS-Gr, has been obtained by anchoring p-phenyl-bis(3,4-dicyanophenyl) ether iron(Ⅱ) polyphthalocyanine (FePPc) on poly(sodium-p-styrenesulfonate) (PSS) modified graphene (PSS-Gr) through a solvothermally assisted π–π assembling approach. The Ultraviolet–visible (UV–vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) results reveal the π–π interaction between FePPc and PSS-Gr. The rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) measurements show that the proposed catalyst possesses an excellent catalytic performance towards ORR comparable with the commercial Pt/C catalyst in alkaline medium, such as high onset potential (−0.08 V vs. SCE), half-wave potential (−0.19 V vs. SCE), better tolerance to methanol crossover, excellent stability (81.1%, retention after 10,000 s) and an efficient four-electron pathway. The enhanced electrocatalytic performance could be chiefly attributed to its large electrochemically accessible surface area, fast electron transfer rate of PSS-Gr, in particular, the synergistic effect between the FePPc moieties and the PSS-Gr sheets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    43
    Citations
    NaN
    KQI
    []