Fabrication of Al-beta/silicalite-1 hydrophilic-hydrophobic zeolite membranes.

2014 
: Hydrophobic-hydrophilic composite membranes containing silicalite-1 and Al-beta zeolites are prepared on the outer surface of the porous alpha-alumina tube for the first time. The hydrophilic layer with aluminum serves as an active catalytic domain, whereas the hydrophobic layer containing silicalite-1 with medium pore-size is expected to assist in separating the reaction products based on their hydrophobicity as well as shape-selectivity. The continuous defect-free composite membranes are fabricated by two-step synthesis approach by initial deposition of Al-beta crystals on the outer surface of porous alumina tube followed by coating of silicalite-1 crystals over the Al-beta layer in the second step under hydrothermal conditions. The composite membranes exhibited a high thermal stability of up to 550 degrees C. The powder X-ray diffraction patterns of samples collected at the bottom of crystallization vessel as well as coated membranes indicated typical BEA and MFI structures consisting of ca. 0.5-0.7 nm size micropores, and free from impurity phase. The field emission scanning electron microscopic (FE SEM) analysis of the silicalite-1 sample exhibited uniform rectangular crystals of size about 20 microm; whereas Al-beta showed spherical morphology with crystal size of approximately 0.6-0.7 microm. The surface and cross-sectional analyses of composite membranes both before and after calcinations exhibited defect-free microstructures for the composite membranes. The calcined membranes exhibited single gas permeation and the observed values for composite membranes are an order of magnitude lower than that of the individual membranes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []