Immunocytochemical ultrastructural study of hypothalamic neurons containing corticotropin-releasing factor in normal and adrenalectomized rats

1988 
Abstract The neurons of the rat hypothalamus which secrete corticotropin-releasing factor were studied by using a pre-embedding immunocytochemical staining technique that improves both the penetration of immunoreagents within the tissue and the preservation of the ultrastructural morphology of labeled structures. Comparison was made between the subcellular location of corticotropin-releasing factor-41 in perikarya of the paraventricular nucleus and axons of the median eminence, both in intact and adrenalectomized animals either untreated or 24 h after the intracerebral injection of colchicine. Morphometric analysis of the numerical density and of the diameter of corticotropin-releasing factor immunoreactive neurosecretory granules in axons of the median eminence of rats not treated with colchicine, indicated that the main modifications induced by adrenalectomy concerned (1) the differential repartition of labeled granules within the preterminal and terminal axonal portions of the median eminence and (2) the enlargement of the diameter of labeled granules contained in these axons (from 98 nm to 165 nm). In the hypothalamus of intact and adrenalectomized rats, colchicine treatment increased the number of corticotropin-releasing factor-immunoreactive granules in the neuronal perikarya and reduced their number in the axons, but both these variations were much more marked in adrenalectomized rats. Although the corticotropin-releasing factor immunoreactive granules that accumulated in the perikarya after colchicine treatment were slightly smaller than those in the corresponding axons, the diameter of perikaryal-labeled granules was larger in adrenalectomized than in intact animals (129 nm vs 93 nm). These findings fit the idea that adrenalectomy markedly stimulates both the synthesis and axonal excretion of secretory granules in the hypothalamic neurons secreting corticotropin-releasing factor. They also indicate that suppression of circulating corticosteroids induces qualitative modifications in these neurons leading to the visualization of larger neurosecretory granules, which may reflect differential synthesis and granular packing of synergistic peptides other than corticotropin-releasing factor and/or changes in the process of intragranular maturation of hormonal material.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    18
    Citations
    NaN
    KQI
    []