Nonadiabatic dynamics simulations on internal conversion and intersystem crossing processes in gold(i) compounds

2018 
The position at which the second gold(i)-phosphine group is attached was experimentally found to play a noticeable role in intersystem crossing rates of gold(i) naphthalene derivatives. However, the physical origin is ambiguous. Herein we have employed generalized trajectory-based surface-hopping dynamics simulations to simulate the excited-state relaxation dynamics of these gold(i) naphthalene compounds including both the intersystem crossing process from the initially populated first excited singlet states S1 to triplet manifolds and internal conversion processes within these triplet states. Our predicted intersystem crossing rates are consistent with experiments very well. On the basis of the present results, we have found that (1) ultrafast and subpicosecond intersystem crossing processes are mainly caused by small energy gaps and large spin-orbit couplings between S1 and Tn; (2) adding the second gold(i)-phosphine group does not increase spin-orbit couplings between S1 and Tn but decrease their value...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    7
    Citations
    NaN
    KQI
    []