Using Molecular Design to Increase Hole Transport: Backbone Fluorination in the Benchmark Material Poly(2,5‐bis(3‐alkylthiophen‐2‐yl)thieno[3,2‐b]‐thiophene (pBTTT)

2015 
The synthesis of a novel 3,3′-difluoro-4,4′-dihexadecyl-2,2′-bithiophene monomer and its copolymerization with thieno[3,2-b]thiophene to afford the fluorinated analogue of the well-known poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]-thiophene) (PBTTT) polymer is reported. Fluorination is found to have a significant influence on the physical properties of the polymer, enhancing aggregation in solution and increasing melting point by over 100 °C compared to nonfluorinated polymer. On the basis of DFT calculations these observations are attributed to inter and intramolecular S…F interactions. As a consequence, the fluorinated polymer PFBTTT exhibits a fourfold increase in charge carrier mobility compared to the nonfluorinated polymer and excellent ambient stability for a nonencapsulated transistor device.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    46
    Citations
    NaN
    KQI
    []