language-icon Old Web
English
Sign In

Extremal quantum states

2020 
The striking differences between quantum and classical systems predicate disruptive quantum technologies. We peruse quantumness from a variety of viewpoints, concentrating on phase-space formulations because they can be applied beyond particular symmetry groups. The symmetry-transcending properties of the Husimi Q function make it our basic tool. In terms of the latter, we examine quantities such as the Wehrl entropy, inverse participation ratio, cumulative multipolar distribution, and metrological power, which are linked to the intrinsic properties of any quantum state. We use these quantities to formulate extremal principles and determine in this way which states are the most and least “quantum”; the corresponding properties and potential usefulness of each extremal principle are explored in detail. While the extrema largely coincide for continuous-variable systems, our analysis of spin systems shows that care must be taken when applying an extremal principle to new contexts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    15
    Citations
    NaN
    KQI
    []