Coarse-to-Fine UAV Target Tracking With Deep Reinforcement Learning

2018 
The aspect ratio of a target changes frequently during an unmanned aerial vehicle (UAV) tracking task, which makes the aerial tracking very challenging. Traditional trackers struggle from such a problem as they mainly focus on the scale variation issue by maintaining a certain aspect ratio. In this paper, we propose a coarse-to-fine deep scheme to address the aspect ratio variation in UAV tracking. The coarse-tracker first produces an initial estimate for the target object, then a sequence of actions are learned to fine-tune the four boundaries of the bounding box. The coarse-tracker and the fine-tracker are designed to have different action spaces and operating target. The former dominates the entire bounding box and the latter focuses on the refinement of each boundary. They are trained jointly by sharing the perception network with an end-to-end reinforcement learning architecture. Experimental results on benchmark aerial data set prove that the proposed approach outperforms existing trackers and produces significant accuracy gains in dealing with the aspect ratio variation in UAV tracking.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    37
    Citations
    NaN
    KQI
    []