Hexagonal Standing-Wave Patterns in Periodically Forced Reaction–Diffusion Systems

2006 
The periodically forced spatially extended Brusselator is investigated in the oscillating regime. The temporal response and pattern formation within the 2:1 frequency-locking band where the system oscillates at one half of the forcing frequency are examined. An hexagonal standing-wave pattern and other resonant patterns are observed. The detailed phase diagram of resonance structure in the forcing frequency and forcing amplitude parameter space is calculated. The transitions between the resonant standing-wave patterns are of hysteresis when control parameters are varied, and the presence of multiplicity is demonstrated. Analysis in the framework of amplitude equation reveals that the spatial patterns of the standing waves come out as a result of Turing bifurcation in the amplitude equation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    1
    Citations
    NaN
    KQI
    []