Selective laser melting 3D printing of Ni-based superalloy: understanding thermodynamic mechanisms

2016 
A mesoscopic model has been established to investigate the thermodynamic mechanisms and densification behavior of nickel-based superalloy during additive manufacturing/three-dimensional(3D) printing(AM/3DP)by numerical simulation, using a finite volume method(FVM). The influence of the applied linear energy density(LED) on dimensions of the molten pool, thermodynamic mechanisms within the pool, bubbles migration and resultant densification behavior of AM/3DP-processed superalloy has been discussed. It reveals that the center of the molten pool slightly shifts with a lagging of 4 lm towards the center of the moving laser beam. The Marangoni convection, which has various flow patterns, plays a crucial role in intensifying the convective heat and mass transfer, which is responsible for the bubbles migration and densification behavior of AM/3DP-processed parts. At an optimized LED of 221.5 J/m, the outward convection favors the numerous bubbles to escape from the molten pool easily and the resultant considerably high relative density of 98.9 % is achieved. However, as the applied LED further increases over 249.5 J/m, the convection pattern is apparently intensified with the formation of vortexes and the bubbles tend to be entrapped by the rotating flow within the molten pool, resulting in a large amount of residual porosity and a sharp reduction in densification of the superalloy. The change rules of the relative density and the corresponding distribution of porosity obtained by experiments are in accordance with the simulation results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []