Klasifikasi Sentimen Ulasan Tempat Makan Berbahasa Indonesia dengan Lexicon dan Improved Naive Bayes

2020 
Ulasan tempat makan pada situs daring seringkali memberikan skor yang tidak sesuai dengan makna pada ulasan. Ulasan dapat berskor rendah namun ulasan mengandung makna positif dan ulasan berskor tinggi dapat mengandung makna yang negatif. Berbagai upaya klasifikasi sentimen ulasan dengan menggunakan analisis sentimen telah dilakukan pada banyak penelitian. Namun analisis sentimen dengan hanya mengandalkan pendekatan supervised learning memberikan hasil salah satu kelas cenderung lebih sering muncul sehingga berakibat pada menurunnya kinerja pengklasifikasi. Dalam makalah ini, pendekatan Improved Naive Bayes yaitu Naive Bayes dengan  fitur unigram dan bigram  dipadukan dengan pendekatan menggunakan lexicon diusulkan untuk meningkatkan kinerja pengklasifikasi. Fitur diperoleh dengan mengekstrak pola POS TAG yang mengandung kata atau frasa yang mengekspresikan emosi yang relevan dengan ulasan tempat makan. Lexicon dibangun secara manual dengan mengumpulkan kata dan frasa unigram dan bigram yang menunjukan emosi yang relevan diungkapkan pada ulasan tempat makan. Pengklasifikasi dengan menggunakan Improved Naive Bayes menunjuakan kinerja yang lebih baik dibandingkan pengklasifikasi menggunakan Naive Bayes. Improved Naive Bayes memperoleh skor precision 80% , recall 77% , dan F1 76%. Sedangkan Naive Bayes memperoleh skor precision 68% , recall 60% , dan F1 56%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []