Pulsed Laser Deposition of Aluminum Nitride Films: Correlation between Mechanical, Optical, and Structural Properties

2019 
Aluminum nitride (AlN) films were synthesized onto Si(100) substrates by pulsed laser deposition (PLD) in vacuum or nitrogen, at 0.1, 1, 5, or 10 Pa, and substrate temperatures ranging from RT to 800 °C. The laser parameters were set at: incident laser fluence of 3–10 J/cm2 and laser pulse repetition frequency of 3, 10, or 40 Hz, respectively. The films’ hardness was investigated by depth-sensing nanoindentation. The optical properties were studied by FTIR spectroscopy and UV-near IR ellipsometry. Hardness values within the range of 22–30 GPa and Young’s modulus values of 230–280 GPa have been inferred. These values were determined by the AlN film structure that consisted of nanocrystallite grains, strongly dependent on the deposition parameters. The values of optical constants, superior to amorphous AlN, support the presence of crystallites in the amorphous film matrix. They were visualized by TEM and evidenced by FTIR spectroscopy. The characteristic Reststrahlen band of the h-AlN lattice with component lines arising from IR active phonon vibrational modes in AlN nanocrystallites was well detectable within the spectral range of 950–500 cm−1. Control X-ray diffraction and atomic force microscopy data were introduced and discussed. All measurements delivered congruent results and have clearly shown a correlation between the films’ structure and the mechanical and optical properties dependent on the experimental conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    7
    Citations
    NaN
    KQI
    []