Novel in vivo experimental viability assays with high sensitivity and throughput capacity using a bdelloid rotifer

2017 
Abstract Rotifers have been used in biological research as well-characterized models of aging. Their multi-organ characters and their sensitivity for chemicals and environmental changes make them useful as in vivo toxicological and lifespan models. Our aim was to create a bdelloid rotifer model to use in high-throughput viability and non-invasive assays. In order to identify our species Philodina acuticornis odiosa (PA), 18 S rDNA-based phylogenetic analysis was carried out and their species-specific morphological markers identified. To execute the rotifer-based experiments, we developed an oil-covered water-drop methodology adapted from human in vitro fertilization techniques. This enables toxicological observations of individual one-housed rotifers in a closed and controllable micro-environment for up to several weeks. Hydrogen peroxide (H 2 O 2 ) and sodium azide (NaN 3 ) exposures were used as well-understood toxins. The toxicity and survival lifespan (TSL), the bright light disturbance (BLD) the mastax contraction frequency (MCF) and the cellular reduction capacity (CRC) , indices were recorded. These newly developed assays were used to test the effects of lethal and sublethal doses of the toxins. The results showed the expected dose-dependent decrease in indices. These four different assays can either be used independently or as an integrated system for studying rotifers. These new indices render the PA invertebrate rotifer model a quantitative system for measuring viability, toxicity and lifespan (with TSL), systemic reaction capacity (with BLD), organic functionality (with MCF) and reductive capability of rotifers (with CRC), in vivo . This novel multi-level system is a reliable, sensitive and replicable screening tool with potential application in pharmaceutical science.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    12
    Citations
    NaN
    KQI
    []