Numerical simulation of local temperature evolution in bituminous materials under cyclic loading

2016 
Asphalt concrete is a heterogeneous material containing a viscoelastic bituminous matrix and elastic aggregates. During fatigue testing in the laboratory, the material stiffness decreases as a result of increase in temperature due to self-heating. The objective of this study was to quantify such self-heating, during fatigue testing, as one of the biases affecting the fatigue life estimation of bituminous materials. A heterogeneous approach, which consists of separating the viscoelastic matrix from the elastic aggregates, has been adopted. According to a complex domain approach, a finite element simulation of a cyclic mechanical loading is proposed by taking into account the dissipated energy, internal thermal evolution, temperature dependence of the matrix stiffness and the heat transfer process. In considering a thermomechanical coupling, the numerical simulation results indicate that dissipated energy in the bituminous matrix is influenced by material heterogeneities. A higher dissipated energy can be o...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    6
    Citations
    NaN
    KQI
    []