Intranasal delivery of interferon-β-loaded nanoparticles induces control of neuroinflammation in a preclinical model of multiple sclerosis: A promising simple, effective, non-invasive, and low-cost therapy
2020
Abstract Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system (CNS). Although interferon (IFN)-β constitutes one of the first-line therapies to treat MS, its efficacy is partial due to the injectable systemic administration, short half-life, and limited CNS access. To address these limitations, we developed IFN-β-loaded chitosan/sulfobutylether-β-cyclodextrin nanoparticles (IFN-β-NPs) for delivery of IFN-β into the CNS via intranasal (i.n.) route. The nanoparticles (NPs) (≈200 nm, polydispersity ≈0.1, and zeta potential ≈20 mV) were prepared by mixing two aqueous solutions and associated human or murine IFN-β with high efficiency (90%). Functional in vitro assays showed that IFN-β-NPs were safe and that IFN-β was steadily released while retaining biological activity. Biodistribution analysis showed an early and high fluorescence in the brain after nasal administration of fluorescent probe-loaded NPs. Remarkably, mice developing experimental autoimmune encephalomyelitis (EAE), an experimental model of MS, exhibited a significant improvement of clinical symptoms in response to intranasal IFN-β-NPs (inIFN-β-NPs), whereas a similar dose of intranasal or systemic free IFN-β had no effect. Importantly, inIFN-β-NPs treatment was equally effective despite a reduction of 78% in the total amount of weekly administered IFN-β. Spinal cords obtained from inIFN-β-NPs-treated EAE mice showed fewer inflammatory foci and demyelination, lower expression of antigen-presenting and costimulatory proteins on CD11b+ cells, and lower astrocyte and microglia activation than control mice. Therefore, IFN-β treatment at tested doses was effective in promoting clinical recovery and control of neuroinflammation in EAE only when associated with NPs. Overall, inIFN-β-NPs represent a potential, effective, non-invasive, and low-cost therapy for MS.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
149
References
5
Citations
NaN
KQI