Preparation of Carbon-Doped TiO2 and Its Application as a Photoelectrodes in Dye-Sensitized Solar Cells.

2015 
In this study, C-doped TiO2 particles were successfully synthesized by a hydrothermal method. Three binding energy peaks were observed at 284.6, 286.2, and 288.5 eV in the C is region of the XPS. The signals at 286.2 and 288.5 eV were attributed to chemically bound C-O and Ti-C-O linkages within the crystalline TiO2 lattice, respectively. The introduction of carbon did not affect the crystallite structure or BET surface area of TiO2. The JSC value of DSSCs based on a C-doped TiO2 electrode was increased by 20% compared to DSSCs using a pure TiO2 electrode, and the energy conversion efficiency was increased by 23%. This was due to the enhancement of dye adsorption and high electrical conductivity of the carbon. High energy conversion efficiency was achieved with the DSSCs based on the C-doped TiC2 electrode.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    8
    Citations
    NaN
    KQI
    []