Optimised expression and spectral analysis of the target enzyme CYP51 from Penicillium digitatum with possible new DMI fungicides

2010 
BACKGROUND: Sterol 14α-demethylase (CYP51), a key target of azole (DMI) fungicides, can be expressed in both prokaryotes and eukaryotes. Green mould of citrus, caused by Penicillium digitatum (Pers.) Sacc., is a serious post-harvest disease. To develop specific and more effective fungicides against this disease, the characteristics of the interaction between sterol 14α-demethylase from P. digitatum (PdCYP51) and possible new fungicides were analysed. The cyp51 gene of P. digitatum was cloned and expressed under different conditions in Escherichia coli (Mig.) Cast. & Chalm., and the binding spectra of PdCYP51 were explored by the addition of two commercial azoles and four new nitrogen compounds. RESULTS: The yield of soluble protein (PdCYP51) was largest when expressed in Rosetta (DE3) induced by 0.5 mM IPTG for 8 h at 30 °C. Compound B (7-methoxy-2H-benzo[b][1,4]thiazine-3-amine) showed the strongest binding activity of the four new nitrogen compounds, with a Kd value of 0.268 µM. The Kd values of the six compounds were significantly correlated with their EC50 values. CONCLUSION: The spectral analysis and bioassay results could be used to screen the new chemical entities effectively. Compound B, selected by virtual screening from a commercial chemical library, is a candidate for a new DMI fungicide. These results provide a theoretical basis and new ideas for efficient design and development of new antifungal agents. Copyright © 2010 Society of Chemical Industry
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    5
    Citations
    NaN
    KQI
    []