Structural mechanism of the active bicarbonate transporter from cyanobacteria

2019 
Bicarbonate transporters play essential roles in pH homeostasis in mammals and photosynthesis in aquatic photoautotrophs. A number of bicarbonate transporters have been characterized, among which is BicA—a low-affinity, high-flux SLC26-family bicarbonate transporter involved in cyanobacterial CO2-concentrating mechanisms (CCMs) that accumulate CO2 and improve photosynthetic carbon fixation. Here, we report the three-dimensional structure of BicA from Synechocystis sp. PCC6803. Crystal structures of the transmembrane domain (BicATM) and the cytoplasmic STAS domain (BicASTAS) of BicA were solved. BicATM was captured in an inward-facing HCO3−-bound conformation and adopts a ‘7+7’ fold monomer. HCO3− binds to a cytoplasm-facing hydrophilic pocket within the membrane. BicASTAS is assembled as a compact homodimer structure and is required for the dimerization of BicA. The dimeric structure of BicA was further analysed using cryo-electron microscopy and physiological analysis of the full-length BicA, and may represent the physiological unit of SLC26-family transporters. Comparing the BicATM structure with the outward-facing transmembrane domain structures of other bicarbonate transporters suggests an elevator transport mechanism that is applicable to the SLC26/4 family of sodium-dependent bicarbonate transporters. This study advances our knowledge of the structures and functions of cyanobacterial bicarbonate transporters, and will inform strategies for bioengineering functional BicA in heterologous organisms to increase assimilation of CO2. BicA is a bicarbonate transporter involved in cyanobacterial photosynthesis. The structure of BicA from Synechocystis suggests a mechanism for all SLC26/4-family transporters and can aid bioengineering of BicA to boost CO2 assimilation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    23
    Citations
    NaN
    KQI
    []