Deep Learning for Efficient and Optimal Motion Planning for AUVs with Disturbances.

2021 
We use the recent advances in Deep Learning to solve an underwater motion planning problem by making use of optimal control tools—namely, we propose using the Deep Galerkin Method (DGM) to approximate the Hamilton–Jacobi–Bellman PDE that can be used to solve continuous time and state optimal control problems. In order to make our approach more realistic, we consider that there are disturbances in the underwater medium that affect the trajectory of the autonomous vehicle. After adapting DGM by making use of a surrogate approach, our results show that our method is able to efficiently solve the proposed problem, providing large improvements over a baseline control in terms of costs, especially in the case in which the disturbances effects are more significant.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    1
    Citations
    NaN
    KQI
    []