Thermal annealing and transient electronic excitations induced interfacial and magnetic effects on Pt/Co/Pt trilayer
2018
Abstract Present study investigates the importance of thermal annealing and transient electronic excitations (using 100 MeV oxygen ions) in assisting the interfacial atomic diffusion, alloy composition, and magnetic switching field distributions in Pt/Co/Pt stacked trilayer. X-ray diffraction analysis reveals that thermal annealing results in the formation of the face centered tetragonal L1°CoPt phase. The Rutherford back scattering spectra shows a trilayer structure for as-deposited and as-irradiated films. Interlayer mixing on the thermally annealed films further improves by electronic excitations produced by high energy ion irradiation. Magnetically hard face centered tetragonal CoPt alloy retains its hard phase after ion irradiation and reveals an enhancement in the structural ordering and magnetic stability. Enhancement in the homogeneity of alloy composition and its correlation with the magnetic switching field is evident from this study. A detailed investigation of the contributing parameters shows that the magnetic switching behaviour varies with the type of thermal annealing, transient electronic excitations of ion beams and combination of these processes.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
35
References
2
Citations
NaN
KQI