Temporal analysis of histopathology and cytokine expression in the rat cerebral cortex after insulin‐induced hypoglycemia

2020 
Hypoglycemic coma causes neuronal death in the cerebral neocortex; however, its unclear pathogenesis prevents the establishment of preventive measures. Inflammation plays a pivotal role in neuronal damage in the hypoglycemic state; however, the dynamics of glial cell activation or cytokine expression remain unknown. Here, we aimed to elucidate the spatiotemporal morphological changes of microglia and time-course cytokine expression profiles in the rat cerebral cortex after hypoglycemic coma. We performed histopathological and immunohistochemical (Iba1, neuronal nuclei, glial fibrillary acidic protein) analyses in the cingulate cortex and four areas of the neocortex: hindlimb area (HL), parietal cortex area 1 (Par1), parietal cortex area 2 (Par2), and perirhinal cortex (PRh). We measured tumor necrosis factor alpha (TNFalpha) and interleukin-6 messenger RNA (mRNA) expression by real-time reverse transcriptase-polymerase chain reaction. Necrotic neurons appeared in the neocortex as early as 3 h after hypoglycemic coma, while they were absent in the cingulate cortex. Neuronal nuclei-immunopositive neurons in the HL, Par2, and PRh were significantly less abundant than in the control at day 1. In Iba1 immunostaining, large rod-shaped cells were detected at 3-6 h after hypoglycemia, and commonly observed in the HL, Par2, and PRh. After 6 h, rod-shaped cells were rarely observed; instead, there was a prominent infiltration of hypertrophic and ameboid-shaped cells until day 7. The mRNA expression of TNFalpha was significantly higher than the control at 3-6 h after hypoglycemia in the neocortex, while it was significantly higher only at 3 h in the cingulate cortex. Our results indicate that early and transient appearance of rod-shaped microglia and persisting high TNFalpha expression levels characterize inflammatory responses to hypoglycemic neuronal damage in the cerebral neocortex, which might contribute to neuronal necrosis in response to transient hypoglycemic coma.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []