Raman spectral imaging of 13C2H15N-labeled α-synuclein amyloid fibrils in cells

2020 
Abstract Parkinson's disease is characterized by the intracellular accumulation of α-synuclein (α-syn) amyloid fibrils, which are insoluble, β-sheet-rich protein aggregates. Raman spectroscopy is a powerful technique that reports on intrinsic molecular vibrations such as the coupled vibrational modes of the polypeptide backbone, yielding secondary structural information. However, in order to apply this method in cells, spectroscopically unique frequencies are necessary to resolve proteins of interest from the cellular proteome. Here, we report the use of 13C2H15N-labeled α-syn to study the localization of preformed fibrils fed to cells. Isotopic labeling shifts the amide-I (13C=O) band away from endogenous 12C=O vibrations, permitting secondary structural analysis of internalized α-syn fibrils. Similarly, 13C 2H stretches move to lower energies in the “cellular quiet” region, where there is negligible biological spectral interference. This combination of well-resolved, distinct vibrations allows Raman spectral imaging of α-syn fibrils across a cell, which provides conformational information with spatial context.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    4
    Citations
    NaN
    KQI
    []