Stable, Temperature-Dependent Gas Mixture Permeation and Separation through Suspended Nanoporous Single-Layer Graphene Membranes

2018 
Graphene membranes with nanometer-scale pores could exhibit an extremely high permeance and selectivity for the separation of gas mixtures. However, to date, no experimental measurements of gas mixture separation through nanoporous single-layer graphene (SLG) membranes have been reported. Herein, we report the first measurements of the temperature-dependent permeance of gas mixtures in an equimolar mixture feed containing H2, He, CH4, CO2, and SF6 from 22 to 208 °C through SLG membranes containing nanopores formed spontaneously during graphene synthesis. Five membranes were fabricated by transfer of CVD graphene from catalytic Cu film onto channels framed in impermeable Ni. Two membranes exhibited gas permeances on the order of 10–6 to 10–5 mol m–2 s–1 Pa–1 as well as gas mixture selectivities higher than the Knudsen effusion selectivities predicted by the gas effusion mechanism. We show that a new steric selectivity mechanism explains the permeance data and selectivities. This mechanism predicts a mean p...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    40
    Citations
    NaN
    KQI
    []