Drosophila larval brain neoplasms present tumour-type dependent genome instability
2017
Single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) are found at different rates in human cancer. To determine if these genetic lesions appear in Drosophila tumours we have sequenced the genomes of 17 malignant neoplasms caused by mutations in l(3)mbt, brat, aurA, or lgl. We have found CNVs and SNPs in all the tumours. Tumour-linked CNVs range between 11 and 80 per sample, affecting between 92 and 1546 coding sequences. CNVs are in average less frequent in l(3)mbt than in brat lines. Nearly half of the CNVs fall within the 10 to 100Kb range, all tumour samples contain CNVs larger that 100 Kb and some have CNVs larger than 1Mb. The rates of tumour-linked SNPs change more than 20-fold depending on the tumour type: late stage brat, l(3)mbt, and aurA and lgl lines present median values of SNPs/Mb of exome of 0.16, 0.48, and 3.6, respectively. Higher SNP rates are mostly accounted for by C>A transversions, which likely reflect enhanced oxidative stress conditions in the affected tumours. Both CNVs and SNPs turn over rapidly. We found no evidence for selection of a gene signature affected by CNVs or SNPs in the cohort. Altogether, our results show that the rates of CNVs and SNPs, as well as the distribution of CNV sizes in this cohort of Drosophila tumours are well within the range of those reported for human cancer. Genome instability is therefore inherent to Drosophila malignant neoplastic growth at a variable extent that is tumour type dependent.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
57
References
0
Citations
NaN
KQI