Optical enhancement of dielectric permittivity in reduced lanthanum aluminate

2020 
When light is absorbed in solids, electrical conductivity is usually enhanced through generation of photodoped conductive carriers, known as photoconduction. Here we show UV-light absorption restrains photoconduction, but markedly enhances dielectric permittivity in a ceramic sample of $\mathrm{LaAl}{\mathrm{O}}_{3}$ with defects introduced deliberately by reduction synthesis. Using systematic dielectric measurements under photoirradiation combined with computational studies for defect formation energies, we explain this unconventional photoinduced phenomenon in terms of photoexcited dipoles: The photoexcited electrons are trapped in in-gap states introduced by oxygen vacancies whereas photoexcited holes are localized in a valence-band maximum. Thus the created electron-hole pair acts as an electric dipole to enhance the dielectric permittivity. This unprecedented photoelectric effect does not only provide an alternative functionality for dielectric materials, but also paves the way for next-generation photoelectronic devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []