Optimization of cysteine residue alkylation using an on-line LC-MS strategy: Benefits of using a cocktail of haloacetamide reagents

2021 
Abstract Several common reagents for the alkylation of cysteine residues of model intact proteins were evaluated for reaction speed, yield of alkylated product and degree of over-alkylation using an online LC-MS platform. The efficiency of the alkylation reaction is found to be dependent on the (1) reagent, (2) peptide/protein, (3) reagent concentration and (4) reaction time. At high reagent concentrations, iodoacetic acid was found to produce significant levels of over-alkylation products wherein methionine residues become modified. For optimal performance of the alkylation reaction, we found the use of a cocktail of chloroacetamide, bromoacetamide and iodoacetamide worked best. The alkylating efficiency of each haloacetamide is a balance between the characteristics of the halogen leaving group and the steric hindrance of the alkylation site on the peptide or protein. A key aspect of using a cocktail of haloacetamides is that they all produce the same modification (+57.0209 Da) to the cysteine residues of the protein while the alkylation efficiency of each site may differ for each of the three reagents. Over-alkylation effects appear to be lower with the cocktail due to a lower concentration of each reagent. The haloacetamide cocktail could be useful when considering complex mixtures of proteins.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    0
    Citations
    NaN
    KQI
    []