Observation of Filterable Bromine Variabilities During Arctic Tropospheric Ozone Depletion Events in High (1hour) Time Resolution

1999 
The halogen ions Br- and Cl- together with NO3-, SO4=, MSA- (methane sulfonate), Na+ and NH4+ were analysed by ion chromatography in extracts of more than 800 aerosol cellulose filter samples taken at Ny Alesund, Svalbard (79°N, 12°E) in spring 1996 (March 27 - May 16) within the European Union project ARCTOC (Arctic Tropospheric Ozone Chemistry). Anticorrelated variations between f-Br (filterable bromine, i.e. water soluble bromine species that can be collected by aerosol filters) and ozone within the arctic troposphere were evaluated at a resolution of 1 or 2 hours for periods with depleted ozone and 4 hours at normal ozone. A mean f-Br concentration of 11 ng m-3 (0.14 nmol m-3) was observed for the whole campaign, while maximum concentrations of 80 ng m-3 (1 nmol m-3) were detected during two total O3-depletion events (O3 drop to mixing ratios below the detection limit of < 2 ppb). Anticorrelation between f-Br and O3 was also seen during minor O3-depletion episodes (sudden drop in O3 by at least 10 ppb, but O3 still exceeding the detection limit) and even for ozone variations near its background level (40-50 ppb). A time lag of about 10 hours between the change of ozone and of f-Br concentrations could only be found during a total ozone depletion event, when f-Br reached its maximum values several hours after ozone was totally destroyed. Bromine oxide (BrO) concentrations, measured by DOAS (Differential Optical Absorption Spectroscopy), and f-Br showed a coincident variability during almost the entire campaign (except in the case of total O3-loss). Frequently enhanced anthropogenic nitrate and sulphate concentrations were observed during O3-depletion periods. At O3 concentrations < 10 ppb sulphate and nitrate exceed their typical mean level by 54% and 77%, respectively. This may indicate a possible connection between acidity and halogen release.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    39
    Citations
    NaN
    KQI
    []