Immunized Token-Based Approach for Autonomous Deployment of Multiple Mobile Robots in Burnt Area

2021 
Collaborative exploration, sensing and communication in previously unknown environments with high network latency, such as outer space, battlefields and disaster hit areas are promising in multi-agent applications. When disasters such as large fires or natural disasters occur, previously established networks might be destroyed or incapacitated. In these cases, multiple autonomous mobile robots (AMR) or autonomous unmanned ground vehicles carrying wireless devices and/or thermal sensors can be deployed to create an end-to-end communication and sensing coverage to support rescue efforts or access the severity of damage. However, a fundamental problem is how to rapidly deploy these mobile agents in such complex and dynamic environments. The uncertainties introduced by the operational environment and wide range of scheduling problem have made solving them as a whole challenging. In this paper, we present an efficient decentralized approach for practical mobile agents deployment in unknown, burnt or disaster hit areas. Specifically, we propose an approach that combines methods from Artificial Immune System (AIS) with special token messages passing for a team of interconnected AMR to decide who, when and how to act during deployment process. A distributed scheme is adopted, where each AMR makes its movement decisions based on its local observation and a special token it receives from its neighbors. Empirical evidence of robustness and effectiveness of the proposed approach is demonstrated through simulation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []