Numerical Study of the Effcet of Imaginary Circle Diameter and Initial Flow Field on the Aerodynamic Field in a Tangentially Fired Furnace

1997 
In this paper,the effect of the imaginary circle diameter φi and the initial flow field on the aerodynamic field in a tangentially fired furnace was studied by numerical simulation and experments in the cold model.Results show that merely reducing the imaginary circle diameter φi can not significantly reduce the rotational diameter φ in the range considered.The flow still rotates counter-clockwise stably and does not change rotation direction when the direction of all jet axes are deflected suddenly to the opposite rotation direction by up to 5.4° in a counter-clockwise flow filed.It is the first time that the numerical simulation results were obtained which agreed quite well with this experimental phenomena qualitatively.The experimental data,ie.e,the rotational diameter φ and the maximum velocity on the symmetric central line of furnace Vm,are only a bit larger than the simulation resuts.It is shown that the initial flow field has an important influence on the aerodynamic field in the funace.Other measures have to be taken as well in order to reduce φ to resist slagging and high temperature corrosion of furnace tubes.Moreover,a new kind of grid arrangement was proposed in this paper,which can reduce effectively the false diffusion at the exit zone of burner.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []