Dehydrative Cyclocondensation Reactions on Hydrogen-Terminated Si(100) and Si(111): An ex Situ Tool for the Modification of Semiconductor Surfaces

2008 
Dehydrative cyclocondensation processes for semiconductor surface modification can be generally suggested on the basis of well-known condensation schemes; however, in practice this approach for organic functionalization of semiconductors has never been investigated. Here we report the modification of hydrogen-terminated silicon surfaces by cyclocondensation. The cyclocondensation reactions of nitrobenzene with hydrogen-terminated Si(100) and Si(111) surfaces are investigated and paralleled with selected cycloaddition reactions of nitro- and nitrosobenzene with Si(100)-2×1. Infrared spectroscopy is used to confirm the reactions and verify an intact phenyl ring and C−N bond in the reaction products as well as the depletion of surface hydrogen. High resolution N 1s X-ray photoelectron spectroscopy (XPS) suggests that the major product for both cyclocondensation reactions investigated is a nitrosobenzene adduct that can only be formed following water elimination. Both IR and XPS are augmented by density funct...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    32
    Citations
    NaN
    KQI
    []