13C NMR of polyolefins with a new high temperature 10 mm cryoprobe

2009 
Abstract Recently, a high temperature 10 mm cryoprobe was developed. This probe provides a significant sensitivity enhancement for 13 C NMR of polyolefins at a sample temperature of 120–135 °C, as compared to conventional probes. This greatly increases the speed of NMR studies of comonomer content, sequence distribution, stereo- and regioerrors, saturated chain end, unsaturation, and diffusion of polymers. In this contribution, we first compare the 13 C NMR sensitivity of this probe with conventional probes. Then, we demonstrate one of the advantages of this probe in its ability to perform 2D Incredible Natural Abundance Double Quantum Transfer Experiment (2D INADEQUATE) in a relatively short period of time. The 2D INADEQUATE has been rarely used for polymer studies because of its inherently very low sensitivity. It becomes even more challenging for studying infrequent polyolefin microstructures, as low probability microstructures represent a small fraction of carbons in the sample. Here, the 2D INADEQUATE experiment was used to assign the 13 C NMR peaks of 2,1-insertion regioerrors in a poly(propylene-co-1-octene) copolymer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    36
    Citations
    NaN
    KQI
    []