BEHAVIOR AND DESIGN OF CONCENTRICALLY LOADED PULTRUDED ANGLE STRUTS

2000 
This paper presents the results of a study pertaining to the short-term behavior of concentrically loaded single angle members made of pultruded fiber-reinforced polymeric materials. Seven E-glass/polyester and 18 E-glass/vinylester angle specimens having slenderness ratios ranging from 30 to 105 and leg width-to-thickness ratios of 8, 10.7, 12, 16, and 24 were tested. Tests have shown that under compression loading, pultruded angles reinforced with E-glass roving and nonwoven E-glass strand mats buckle in either flexural or flexural-torsional modes. These experimentally observed buckling modes were also predicted analytically, based on derived mathematical models that describe the buckling behavior of a specially orthotropic, centrally loaded, equal-leg angle section. Compression and in-plane shear coupon tests were conducted to characterize the material. The results were analyzed statistically to obtain the 95% lower confidence limit on the 5th percentile strength and modulus values, which in turn were ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    29
    Citations
    NaN
    KQI
    []